

Sécuriser l'administration des formes injectables à risque

- Problèmes d'administration liés au matériel de perfusion -

Pr Bertrand DÉCAUDIN (Pharmacien — PU-PH – Université Lille 2)

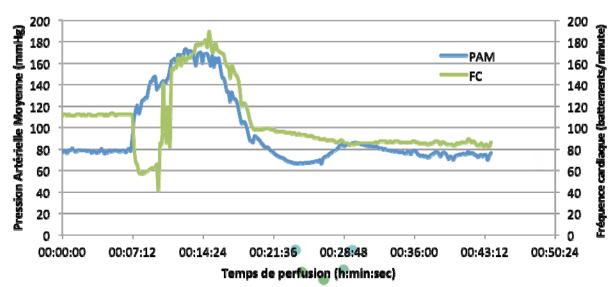
Conflits d'intérêt

Le matériel nécessaire à certains travaux de notre laboratoire présentés dans ce diaporama a été financé par Doran International

Sommaire

- Évènements indésirables médicamenteux au cours de perfusions multiples simultanées en anesthésie-réanimation
- Présentation des cas cliniques
- Données de la littérature scientifique
- Résolution des cas cliniques

Présentation des cas cliniques



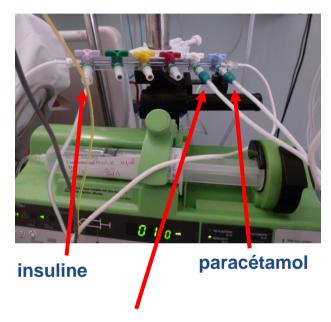
Cas clinique n°1 (1)

- Mme Z., 57 ans, subit une résection des segments IV et V du foie
- En service de soins intensifs péri-opératoires
 - → Chute de la pression artérielle moyenne (PAM)
 - Remplissage vasculaire par cristalloïdes et/ou colloïdes
 - Persistance d'une pression artérielle basse
 - Introduction de la noradrénaline
- La mise en route de la perfusion de noradrénaline s'est traduite par
 - → Un choc hémodynamique
 - Un retard dans l'obtention d'une stabilisation de la PAM

Cas clinique n°1 (2)

- Augmentation de la PAM 7 minutes après le démarrage de la perfusion
- Après 9 minutes
 - → Perturbations hémodynamique majeures
 - > PAM > 140 mmHg
 - FC ≈ 190 battements/min
- Stabilisation de la pression artérielle en 29 minutes

Cas clinique n°2 (1)


- Monsieur P., 79 ans, subit une résection du 1/3 supérieur de l'œsophage
- Traitement à J1 sur la voie centrale sous-clavière :
 - → Perfusions mécaniques (pompe et pousse-seringues) : nutrition parentérale, insuline
 - Perfusions par gravité : paracétamol, pipéracillinetazobactam
- Présence de liquide blanc dans les tubulures de paracétamol et pipéracilline-tazobactam

Cas clinique n°2 (2)

pipéracilline-tazobactam

Cas clinique n°3 (1)

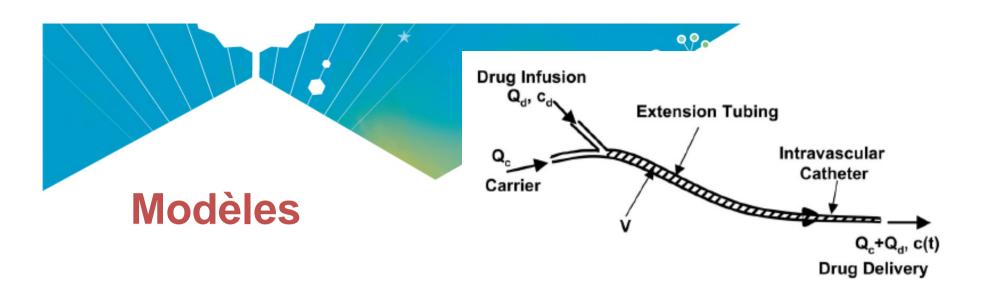
- Madame G., 85 ans, subit une chirurgie abdominale
- Mise sous insulinothérapie en post-opératoire pour contrecarrer les hyperglycémies péri-opératoires
- Devant des saignements massifs, transfert au scanner pour exploration
- A son retour, madame. G présente une hypoglycémie majeure

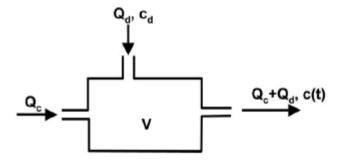
Cas clinique n°3 (2)

Données de la littérature scientifique Approche rationnelle

Introduction

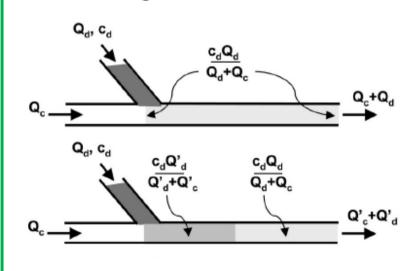
- Ligne de perfusion
 - → Simple
 - → Complexe
- Perfusions
 - → Simultanées
 - → Successives
- Accès veineux
 - → Unique
 - → Multiples




Problèmes identifiés

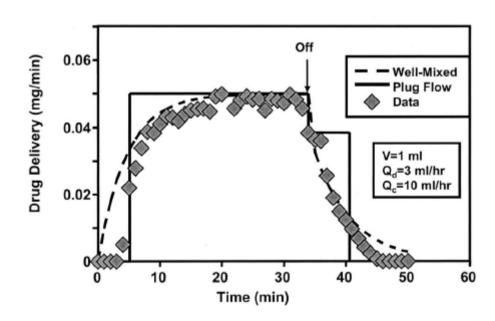
- Démarrage de la perfusion
 - → Temps de latence
- Débit massique
 - Variation non souhaitée du débit
- Quantité et qualité du produit administré
 - Administration de produits non souhaités
 - → Administration partielle des quantités prescrites

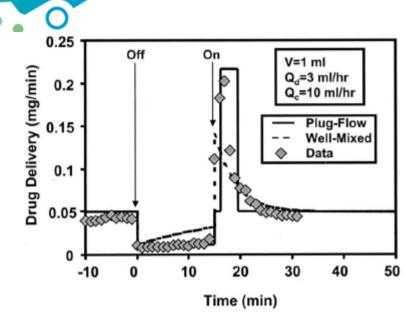
22/11/2012

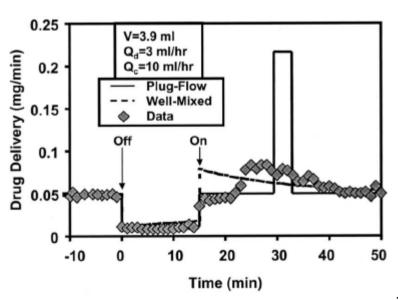

Well-Mixed Model

$$c = \frac{c_d Q_d}{Q_d + Q_c} (1 - e^{-(Q_d + Q_c)t/V})$$

$$c = \frac{c_d Q_d}{Q_d + Q_c} e^{-(Q_d' + Q_c')t/V} + \frac{c_d Q_d'}{Q_d' + Q_c'} (1 - e^{-(Q_d' + Q_c')t/V})$$


Plug-Flow Model


. The time to completely washout V is exactly one time constant: $V/(Q_d + Q_c)$.



Utilisation des modèles

Lovich MA et al, Anesth Analg. 2005

Intérêt des modèles

- Description simple
- Validation dans des conditions standardisées
- Limites
 - → Nombreux facteurs de variation
 - Conditions particulières de débit
 - Multiperfusion
 - Montages complexes de perfusion

 Évaluation de l'impact du volume résiduel

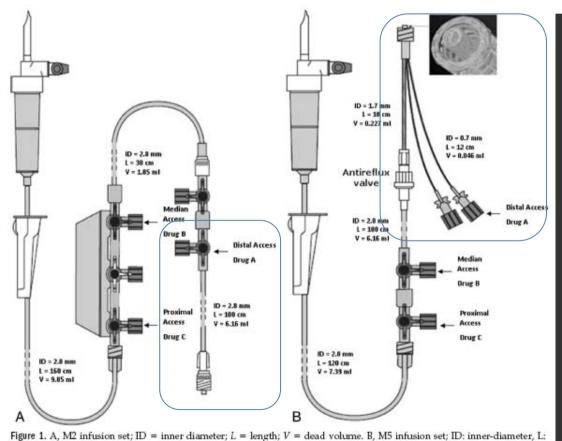
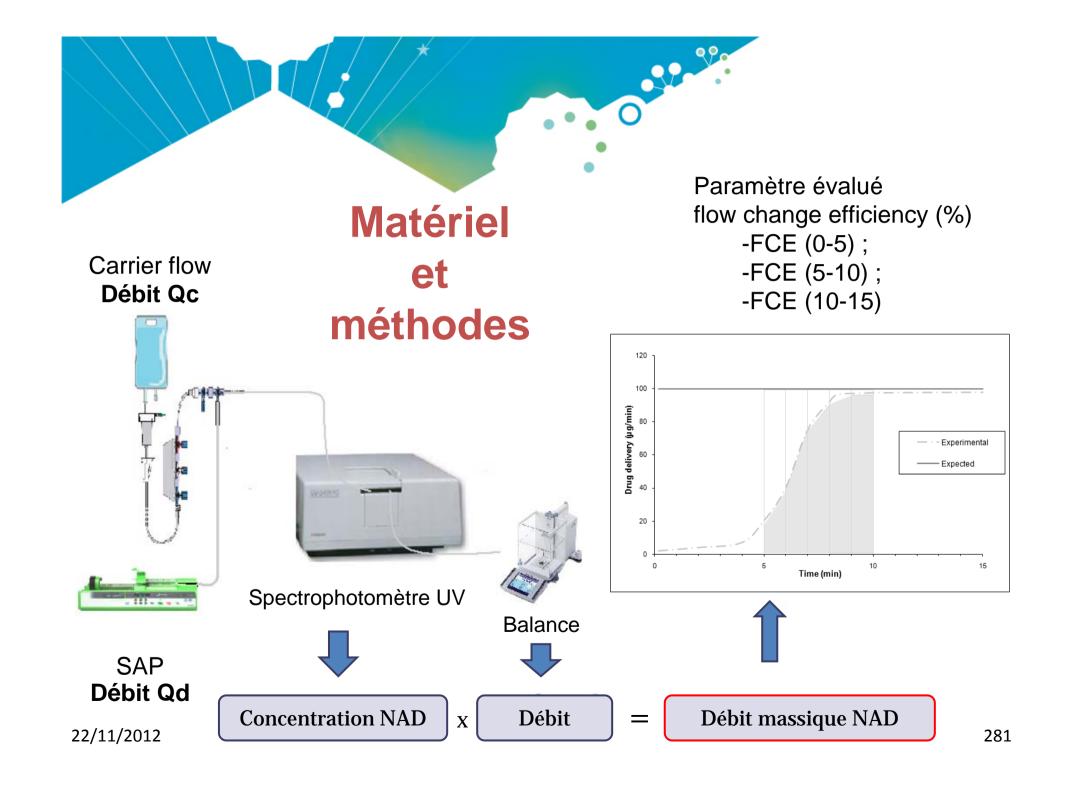
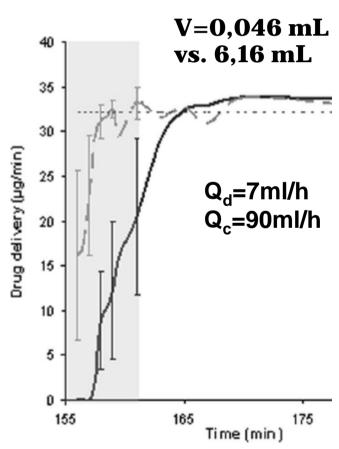
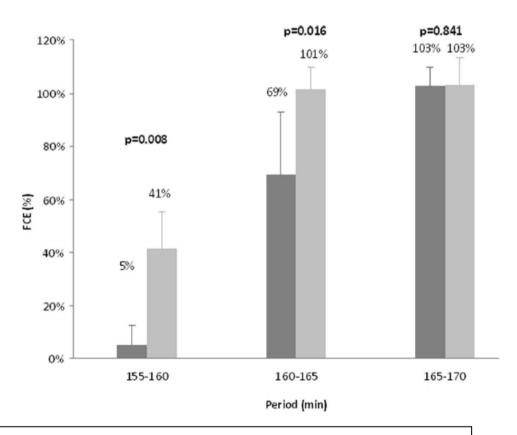
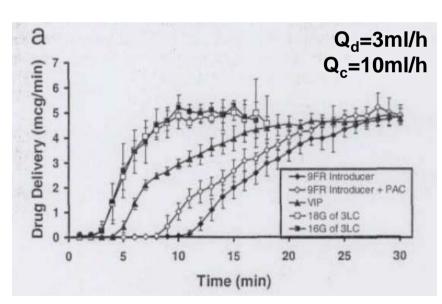
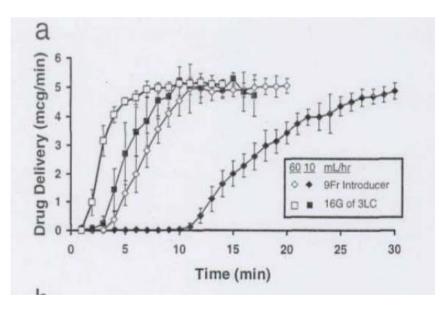





Figure 1. A, M2 infusion set; ID = inner diameter; L = length; V = dead volume. B, M5 infusion set; ID: inner-diameter, L length, V: dead volume.

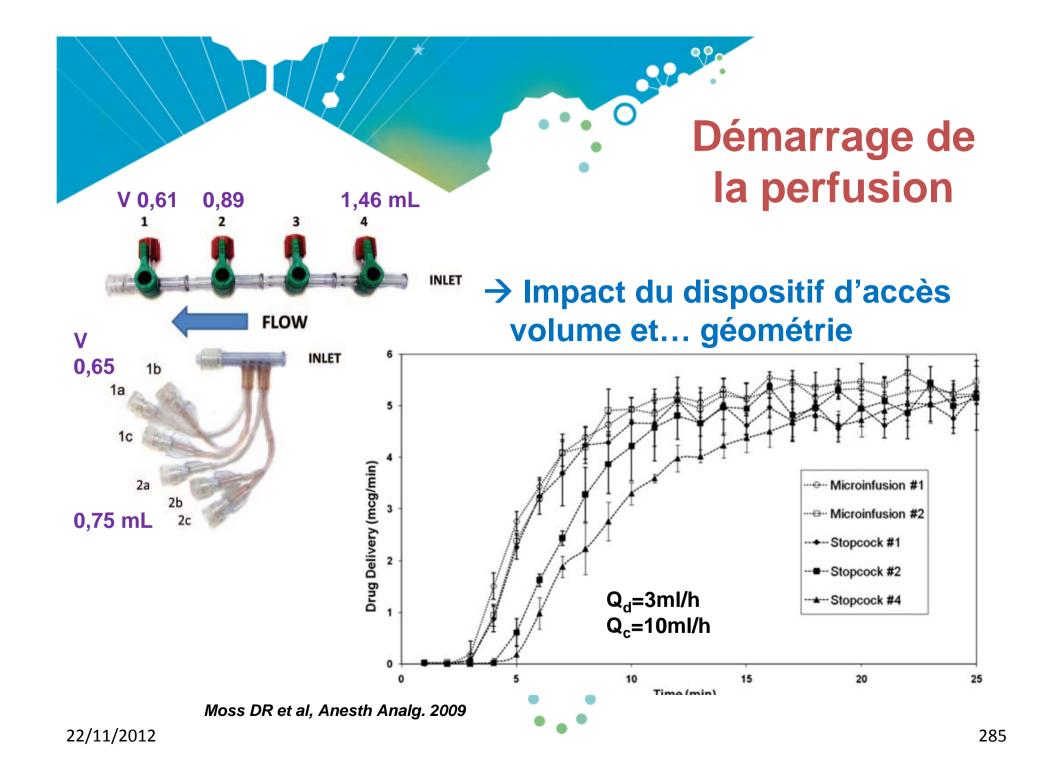

Décaudin B et al, Anesth Analg. 2009



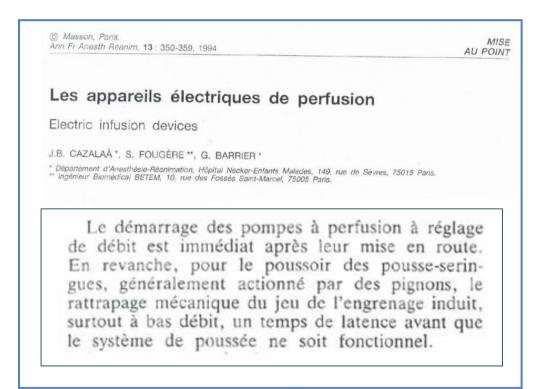
→ Impact du volume résiduel

→ Ne pas oublier le volume résiduel du CVC

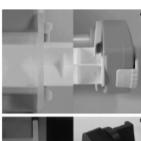
Lovich MA et al, Crit Care Med. 2007



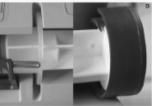
22/11/2012


- Autres paramètres à prendre en compte
 - → Géométrie Design de l'accès
 - → Temps de démarrage des pousse-seringues

- Fresenius Pilote A2
 - \rightarrow Le Q_d = 7mL/h
 - → Purge manuelle
 - → Seringue Pentaferte 50 mL
 - \rightarrow T1 = 76 sec ± 13 sec

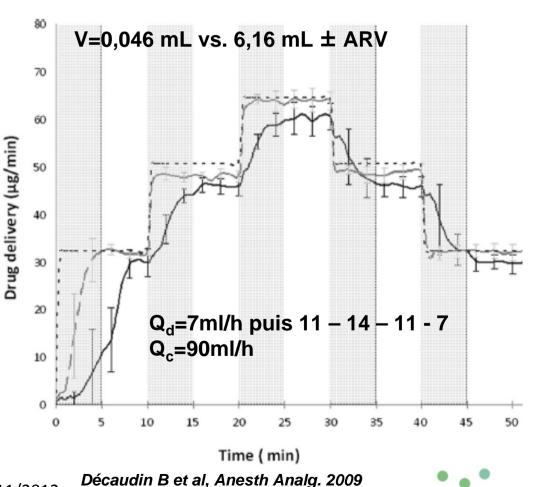


→ Impact du temps de démarrage du pousse-seringue


- → Temps de démarrage du pousse-seringue
 - → Technologie de mise en route rapide
 - → Bolus (1 mL 2 mL) purge automatique

A low cost alternative to this high-tech feature is to prerun the syringe pump for a specific time (15 min if the desired delivery rate is 1 ml/h, 7.5 min at 2 ml/h) after delivery of the start-up bolus and before connecting the line to the patient.

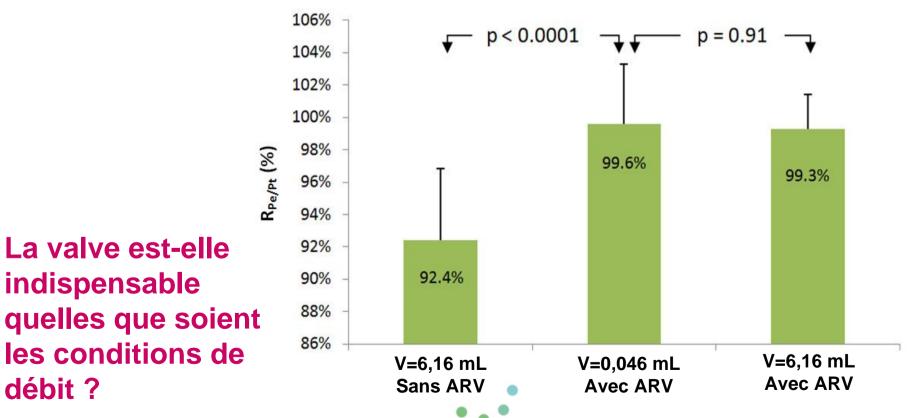
Start-up delay times at a flow rate of 1 ml·h⁻¹ from depressing the start button up to first fluid delivery (t_1) and up to achievement of steady state flow (t_2) t (minutes)


Pump model	Pump A Braun Perfusor compact	Pump B IVAC P4000	Pump C Fresenius Injectomat cp-IS	Pump D Arcomed Syramed μSP6000
t ₁ no bolus	6.75 ± 4.4	10.9 ± 8.7	31.9 ± 14.2	57.2 ± 28.6
t2 no bolus	19.6 ± 9.3	21.0 ± 10.6	52.8 ± 13.3	76.3 ± 29.0
t_1 bolus	1.1 ± 0.8	0.9 ± 0.5	0.6 ± 0.25	0.3 ± 0.1
t ₂ bolus	11.1 ± 4.3	6.0 ± 3.1	8.8 ± 4.1	7.4 ± 2.5

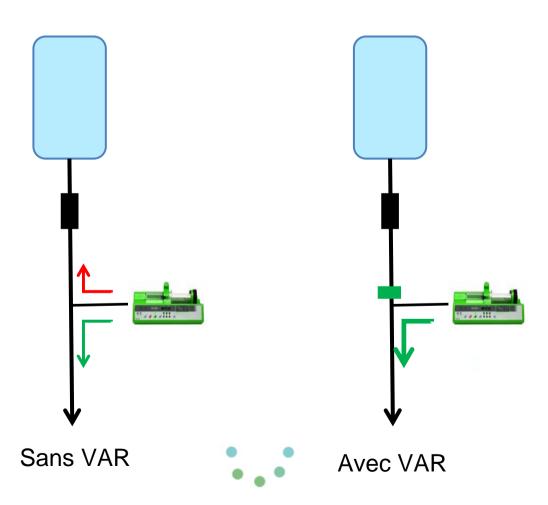
Values are mean ± sp.

Neff T et al, Ped Anesth. 2001

22/11/2012

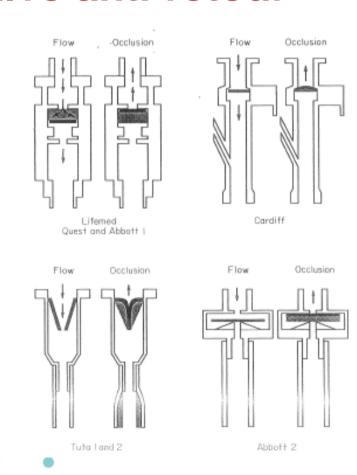

Variation des débits perfusion

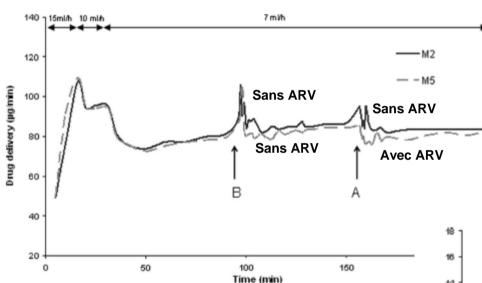
- Impact initial du temps de démarrage du pousse-seringue
- Impact du volume résiduel sur la variation de débit massique à chaque changement de débit
- Impact de la VAR sur la hauteur des plateaux


Intérêt de la valve anti-retour

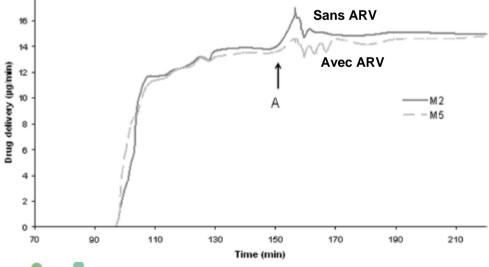
Hauteur du plateau 15 minutes après le changement de débit

Intérêt de la valve anti-retour


22/11/2012


Intérêt de la valve anti-retour

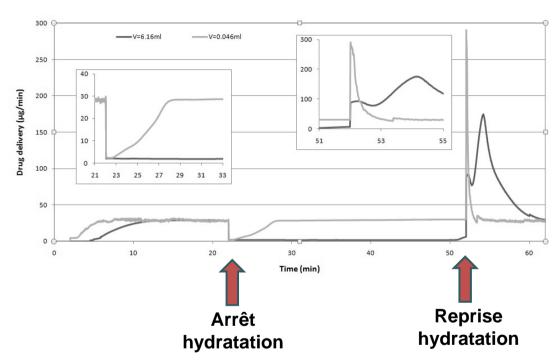
- Prévention des perfusions rétrogrades de produits
 - → Effet bolus
 - → En cas d'obstruction
 - → En cas de branchement
 - Application à la Multiperfusion


Kluger MT et al, Anesth. 1990

Perturbations liées à la Multiperfusion

ARV → Prévention des bolus lors des branchements en aval

Perturbations liés aux variations de débits


- Situation
 - → Modification du débit d'un des éléments de la ligne
 - Hydratation, autres médicaments perfusés
 - Changement de poche et/ou de seringue
- Retour aux modèles
 - Impact sur le débit global et sur la concentration des médicaments administrés
 - → Fonction du volume résiduel et des débits

Arrêt/Reprise Hydratation

 $Q_d = 7mL/h Q_c = 90mL/h$

Variation du débit massique au cours du temps

	FCE during 5-min period after start of noradrenaline infusion	FCE during 10-min period after stopping carrier fluid flow	FCE during 10-min period after restarting carrier fluid flow
Standard set (V = 6.16 mL)	10.2% (3.4%)	6.7% (0.5%)	257.8% (25.0%)
Very low dead-space volume	62.4% (5.1%)*	63.5% (0.8%)*	119.9% (0.6%)*
set $(V = 0.046 \text{ mL})$			

Valeur du FCE par intervalle de 5 minutes à partir du démarrage de la perfusion

Différence significative (p = 0.011)

Changement de seringues

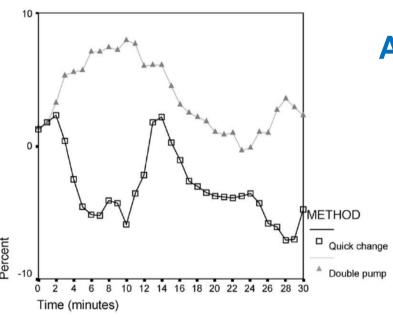
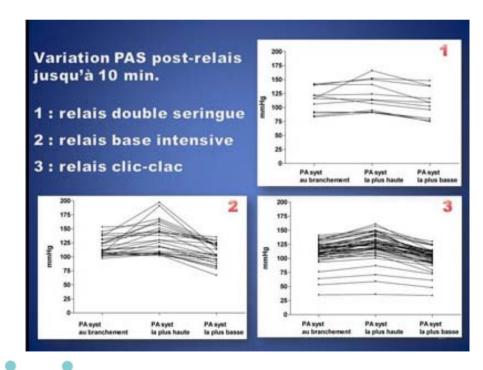



Figure 1. Mean change in MAP over time.

Table 2 Mean percent change in MAP for dose level			
Quick-change	Double infusion		
-1.8026	4.8318		
-10.9751	-9.8550		
-3.2258	5.0275		
	Quick-change -1.8026 -10.9751		

Arino M et al, Intens Crit Care Nurs. 2004

Application aux catécholamines

Ricard JD, SRLF 2009

22/11/2012

Optimisation des procédures

Protocolisation du changement de seringue

Catecholamine changeover-induced hemodynamic incidents

	Phase 1	Phase 2	P value	
Dobutamine	11/162 (7)	3/214 (1)	0.006	
Dopamine	21/62 (34)	10/106 (9)	<0.001	
Norepinephrine	46/207 (22)	15/155 (10)	0.002	
Epinephrine	0/4 (0)	0/3 (0)	•	
Total	78/435 (18)	28/478 (6)	<0.0001	

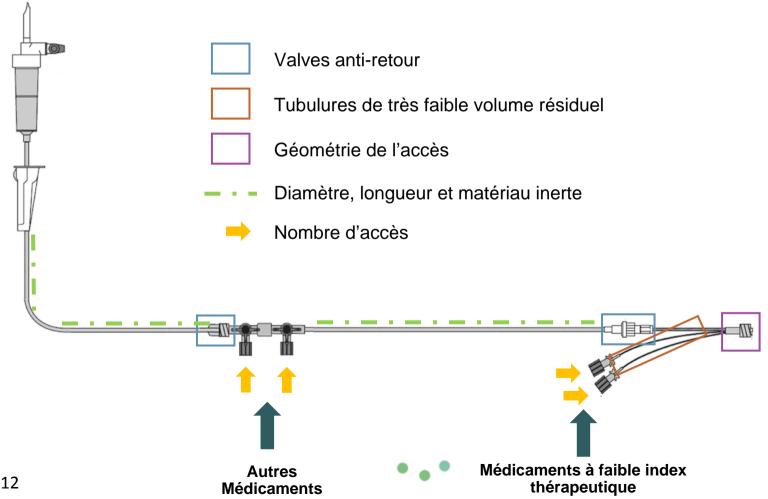
Data expressed as the number of incidents/number of changeovers (%).

Nature of incidents

	Phase 1 (n = 78)	Phase 2 (n = 28)
Decrease in systolic blood pressure >20 mmHg	49 (63)	12 (43)
Increase in systolic blood pressure >20 mmHg	28 (36)	15 (54)
Decrease in heart rate >20 beats/min	1 (1)	0 (0)
Increase in heart rate >20 beats/min	0 (0)	1 (3)
Arrhythmia	O (O)	0 (0)

Data expressed as the number (%) of incidents.

Optimisation des procédures

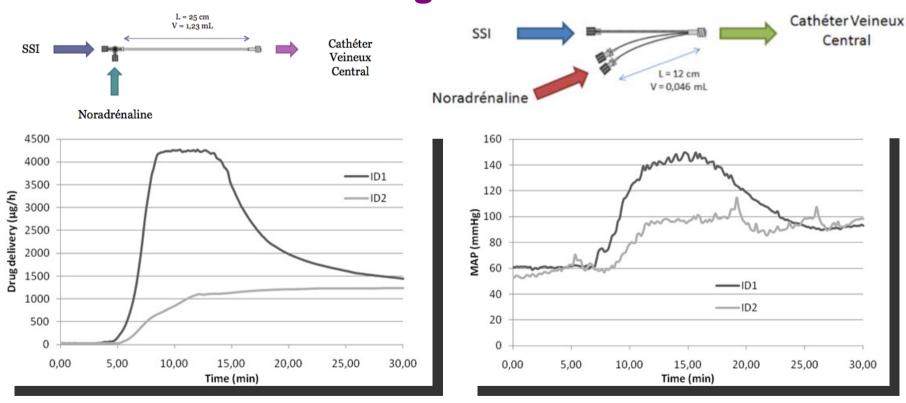

Près d'un cinquième des produits actifs ne sont pas perfusés au patient

- Perfusion au bloc opératoire
- → En l'absence de protocole de rinçage
 - → Antibiotiques : 19% ± 6% de volume non perfusé
 - ➤ Volume moyen de poche de 67 ± 24 mL
 - → Antalgique (paracétamol) : 10,8% ± 1,4% de volume non perfusé
 - ➤ Volume du flacon de 100 mL

Optimisation des dispositifs

Optimisation des dispositifs

Résolution des cas cliniques


Cas clinique n°1 (1)

- Mme Z., 57 ans, subit une résection des segments IV et V du foie
- En service de soins intensifs péri-opératoires
 - → Chute de la pression artérielle moyenne (PAM)
 - Remplissage vasculaire par cristalloïdes et/ou colloïdes
 - Persistance d'une pression artérielle basse
 - Introduction de la noradrénaline
- La mise en route de la perfusion de noradrénaline s'est traduite par
 - → Un choc hémodynamique
 - Un retard dans l'obtention d'une stabilisation de la PAM

Cas clinique nº1 (2)

→ Attention au montage!

Genay S et al, ASA Chicago, 2011

Cas clinique n°2 (1)

- Monsieur P., 79 ans, subit une résection du 1/3 supérieur de l'œsophage
- Traitement à J1 sur la voie centrale sous-clavière :
 - → Perfusions mécaniques (pompe et pousse-seringues) : nutrition parentérale, insuline
 - Perfusions par gravité : paracétamol, pipéracillinetazobactam
- Présence de liquide blanc dans les tubulures de paracétamol et pipéracilline-tazobactam

• • •

Cas clinique n°2 (2)

- Ligne de perfusion dispositifs de perfusion mécaniques et par gravité
- Possibilité de perfusion rétrograde
 - → Déséquilibre des pressions
 - Obstruction en aval sur la ligne de perfusion
- → Intérêt de la valve anti-retour

Cas clinique n°3 (1)

- Madame G., 85 ans, subit une chirurgie abdominale
- Mise sous insulinothérapie en post-opératoire pour contrecarrer les hyperglycémies péri-opératoires
- Devant des saignements massifs, transfert au scanner pour exploration
- A son retour, madame. G présente une hypoglycémie majeure

Cas clinique n°3 (2)

- Ligne de perfusion avec rampe de robinets et prolongateur
 - Hydratation par gravité
 - → Insuline administrée par pousse-seringues
- À l'arrivée en radiologie, le manipulateur pose la poche d'hydratation sur le lit du patient
- Au départ du patient, la poche d'hydratation est remise en hauteur
- → Revoir le protocole de perfusion

Remerciements

- Laboratoire de Biopharmacie, Pharmacie Galénique et Hospitalière (Université Lille 2)
 - → Stéphanie Genay, Aurélie Foinard, Damien Lannoy, Christine Barthélémy, Nicolas Simon et Pascal Odou
- Département d'Anesthésie-Réanimation, CHU de Poitiers
 - Bertrand Debaene
- Soins Intensifs Péri-Opératoires, CHRU de Lille
 - → Sabine Ethgen et Gilles Lebuffe
- Groupe perfusion du CHRU de Lille
 - Christian Erb et Sébastien Neuville