


# Le bon usage des anti-infectieux - Obésité et antibiothérapie : quelles adaptations posologiques ? -

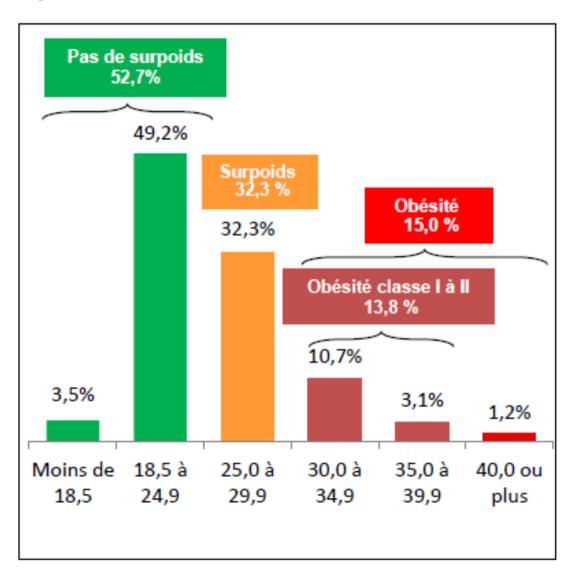
Dr F. BASTIDES (Médecin PH - Pilote de la CRAI – CHRU Tours)





### Classification OMS

poids (en kg)

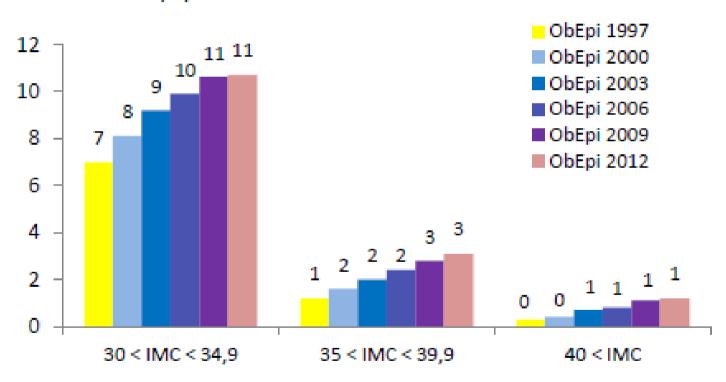

IMC =

taille<sup>2</sup> (en m)

| Classification  |             |
|-----------------|-------------|
| Maigreur        | < 18,5      |
| Normal          | 18,5 - 24,9 |
| Surpoids        | 25,0 - 29,9 |
| Obésité modérée | 30,0 - 34,9 |
| Obésité sévère  | 35,0 - 39,9 |
| Obésité massive | ≥ 40,0      |

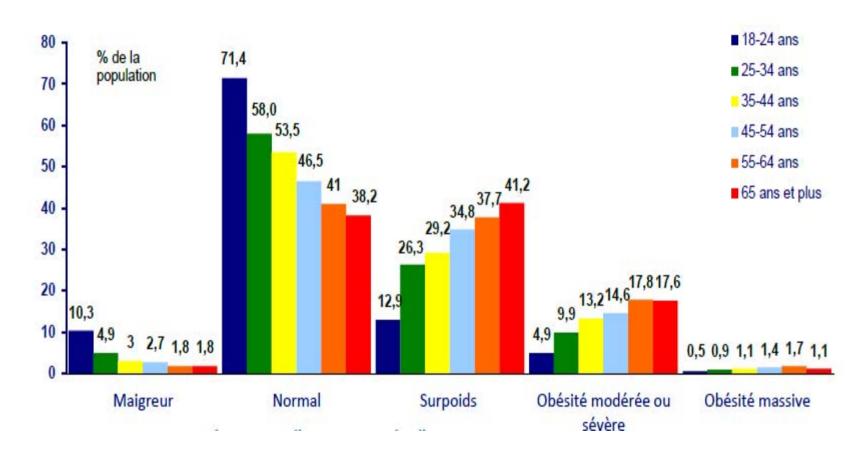
Remarque: > 50 kg/m2: super-obèse, > 60 kg/m2: super-super-obèse

# Population française en 2012 répartition en fonction de l'IMC




**USA > 30%** 

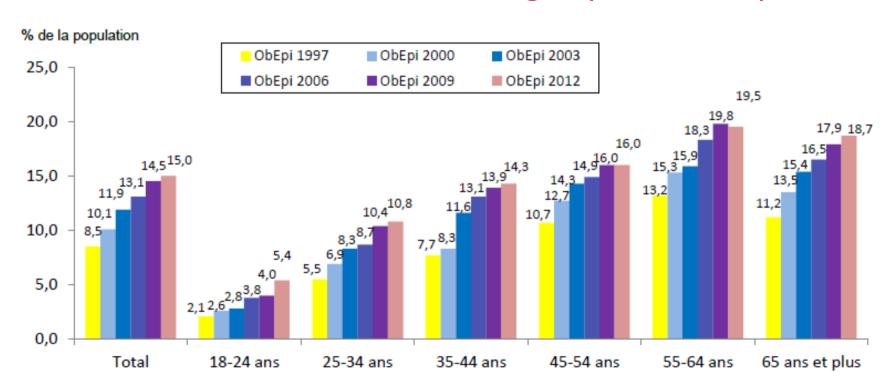
*Obepi-2012* 


# • IMC et obésité évolution depuis 1997

#### % de la population



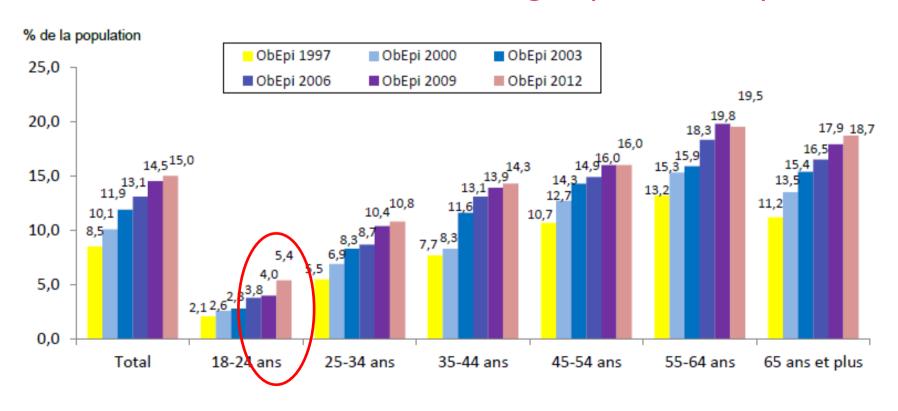
Une augmentation modeste de la prévalence de l'obésité entre 2009 et 2012 démontre un ralentissement significatif de sa progression


# Variation de l'IMC avec l'âge



L'IMC augmente avec l'âge

Davantage de surpoids chez l'homme : 39% vs 26%, mais moins d'obésité : 14.3% vs 15.7%


# Prévalence de l'obésité en fonction de l'âge (IMC >30)



La prévalence de l'obésité croît avec l'âge



# Prévalence de l'obésité en fonction de l'âge (IMC >30)



La prévalence de l'obésité croît avec l'âge Plus forte augmentation 2009-2012 : 18-24 ans = +35%

## Obésité Prévalences et variations régionales

|                   | Prévalence 1997 | Prévalence 2012 | variation |
|-------------------|-----------------|-----------------|-----------|
| France            | 8.5%            | 15%             | +76.5%    |
| Région Centre     | 9.8%            | 16.9%           | + 72.5%   |
| Région Parisienne | 7.0%            | 14.4%           | + 105.7%  |
| Auvergne          | 11.1%           | 14.4%           | + 29.7%   |





- Comparaisons à une population non obèse
- Risque relatif :

Traitement pour HTA . Surpoids : x 2.3

. Obésité: x 3.6

Dyslipidémie traitée . Surpoids : x 2.2

. Obésité: x 2.7

Diabète traité . Surpoids : x 3

. Obésité: x 7

• 3FDR traités . Surpoids : x 5

. Obésité : x 14

Autres associations : insuffisance respiratoire, cancers, NASH......



### Obésité

- Impacts en pathologies infectieuses :
  - Incidence
  - Pronostic



#### **BMC Infectious Diseases**

**BioMed** Central

Research article

**Open Access** 

## Obesity and smoking are factors associated with poor prognosis in patients with bacteraemia

Reetta Huttunen\*1,2, Janne Laine1, Jukka Lumio1, Risto Vuento3 and Jaana Syrjänen1,2

Results: Nineteen patients (12.8%) died of bacteraemia. We found obesity (p = 0.002, RR 9.8; 95% Cl 2.3 to 41.3), smoking (p < 0.001, RR 16.9; 95% Cl 2.1 to 133.5), alcohol abuse (p = 0.008, RR 3.9; 95% Cl 1.3 to 11.28), COPD (p = 0.01, RR 8.4; 95% Cl 1.9 to 37.1) and rheumatoid arthritis (p = 0.045, RR 5.9; 95% Cl 1.2 to 28.8) to be significantly associated with case fatality in bacteraemia in univariate model. The median BMI was significantly higher among those who died compared to survivors (33 vs. 26, p = 0.003). Obesity and smoking also remained independent risk factors for case fatality when their effect was studied together in a multivariate model adjusted with the effect of alcohol abuse, age (continuos variable), sex and causative organism.

Analyse multivariée : FDR mortalité

- obésité : RR : 6.4 p=0.03

- tabagisme : RR: 23.0 p=0.02

#### Obésité

#### mécanismes du sur-risque

#### Respiratory tract<sup>22</sup>

Pulmonary restriction

Decreased pulmonary volumes

Ventilation-perfusion mismatching

Obstructive sleep apnea

Risk of pulmonary embolism

Dysregulated immune response in the lung

#### Skin and soft tissues and bone<sup>23</sup>

Disrupted micro- and macrocirculation

Decreased wound healing

Lymphedema<sup>93</sup>

#### Immune system14

Impaired chemotaxis

Altered differentiation of macrophages

Dysregulated cytokine production

Imbalanced cross-talk between immune system and adipose cells

#### Obesity-related comorbidities

Diabetes mellitus

Atherosderosis

#### Pharmacological issues<sup>7</sup>

Limited or no data on the right dosing of antimicrobials in obesity Altered protein binding, metabolism and volume of distribution of antimicrobials

### Obésité

mécanismes du sur-risque

#### Respiratory tract<sup>22</sup>

Pulmonary restriction

Decreased pulmonary volumes

Ventilation-perfusion mismatching

Dysregulated immune response in themsen clinique in and soft tissult of deal extensions.

micro- and macrocirculation

# té dans la réalisation et Altered differentiation of recophages Dysregulacit attakine production Otherwise Constitution Sity-relation

ntiedal inced cross-talk between immune system and adipose cells

#### Obesity-related comorbidities

Diabetes mellitus

Atherosclerosis

#### Pharmacological issues<sup>7</sup>

Limited or no data on the right dosing of antimicrobials in obesity Altered protein binding, metabolism and volume of distribution of antimicrobials

# Obésité et médicaments en pratique

- Changements physiologiques chez l'obèse :
  - Augmentation du débit cardiaque
  - Augmentation de la masse adipeuse
  - Augmentation de la masse grasse

Ces modifications (ADME) entrainent des modifications **pharmacocinétiques** et **pharmacodynamiques** des traitements :

- Exposition aux xénobiotiques
- Réponse pharmacologique





## Risques thérapeutiques

- Sous-dosages :
  - Si utilisation aux doses habituelles
- Sur-dosages :
  - Si utilisation du poids réel lors d'une prescription en mg /kg
  - Marges thérapeutiques





The American Journal of Emergency Medicine

www.elsevier.com/locate/ajem

**Brief Report** 

## Underdosing of common antibiotics for obese patients in the $ED^{\Leftrightarrow, \Leftrightarrow \Leftrightarrow}$

Jada L. Roe MD<sup>a</sup>, Joseph M. Fuentes MD<sup>b</sup>, Michael E. Mullins MD<sup>b,\*</sup>

<sup>a</sup>Washington University School of Medicine, Campus Box 8072, Saint Louis, MO 63110, USA
 <sup>b</sup>Division of Emergency Medicine, Washington University School of Medicine, Campus Box 8072, Saint Louis, MO 63110, USA

| Table 1 Recommended antibiotic dosing for patients with BMI greater than 40 kg/m² and body mass more than 100 kg |                             |                                        |                               |
|------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------|-------------------------------|
| Cefazolin                                                                                                        | CrCl ≥30, 2 g IV, every 8 h | CrCl 10-29 mL/min, 2 g, IV, every 12 h | CrCl <10, 2 g, IV, every 24 h |
| Cefepime                                                                                                         | CrCl ≥60                    | CrCl 30-59 mL/min                      | CrCl <30                      |
| Serious infections a                                                                                             | 2 g, IV, every 8 h          | 2 g, IV, every 12 h                    | 2 g, IV, every 24 h           |
| Other infections                                                                                                 | 2 g, IV, every 12 h         | 2 g, IV, every 24 h                    | 2 g, IV, every 24 h           |
| Ciprofloxacin                                                                                                    | CrCl ≥30                    | CrCl <29                               |                               |
| IV                                                                                                               | 800 mg, IV, every 12 h      | 800 mg, IV, every 24 h b               |                               |
| PO                                                                                                               | 750 mg, PO, every 12 h      | 750 mg, PO, every 24 h <sup>c</sup>    |                               |

IV indicate intravenous; PO, per os.

Sources: References [4-6].

<sup>&</sup>lt;sup>a</sup> Febrile Neutropenia; type 1 β-lactamase-producing strains; Pseudomonas aeruginosa; cystic fibrosis.

b Or 400 mg, IV, every 12 hours.

c Or 500 mg, PO. every 12 hours.

## Exemples

Infection risk

Pneumonia8-11

Helicobacter pylori infection 122-127

Fungal infections

(no studies)

Tropical infections

(no studies)

Tuberculosis 128-130

Influenza (no studies)

Viral hepatitis (no studies)

Bacteremia and

sepsis 43,57,58,65,74,87,131

HIV (no studies)

Acute pancreatitis<sup>88</sup>

Infection outcome

Pneumonia<sup>6,115–121</sup>

Helicobacter pylori infection

(no studies)

Nosocomial and surgical-site

infections86,87

Periodontitis (no studies)

Urinary tract infections (no studies)

Skin infections 99

Influenza viruses other than H1N1 (ref. 37)

Bacteremia and sepsis. 44,132

HIV<sup>133-140</sup>

# Les poids théoriques adaptation posologique « pondérée »

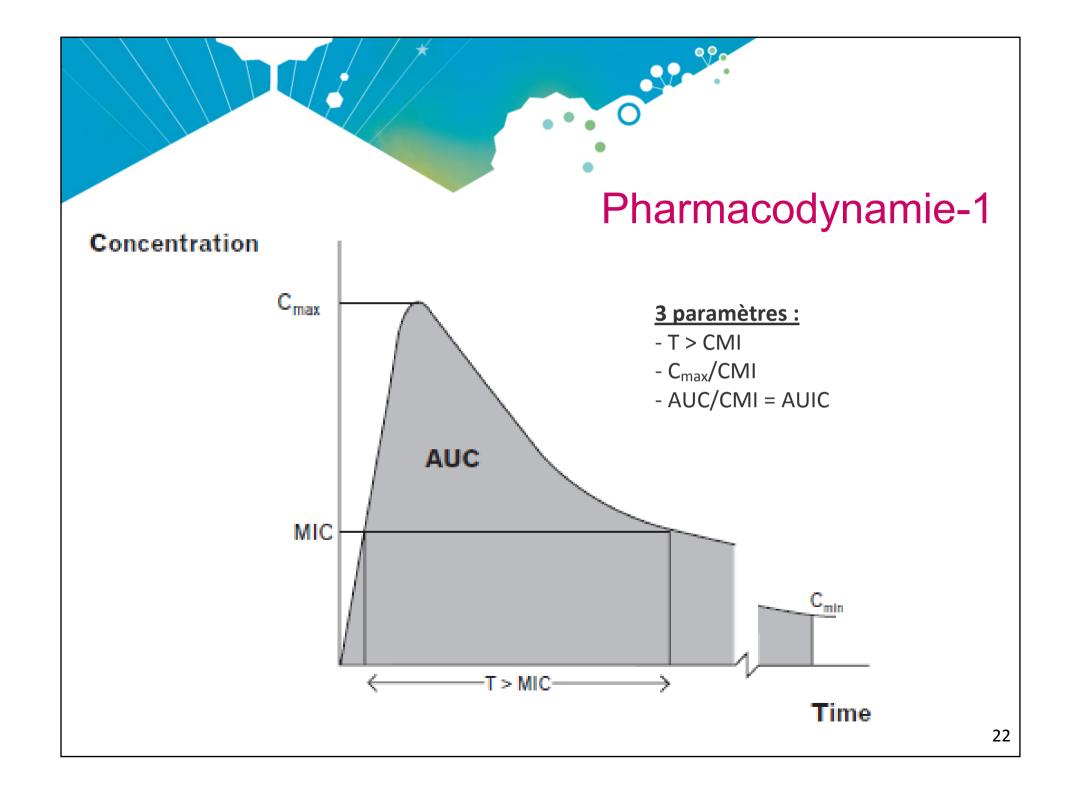
- TBW (Total Body Weight): poids réel mesuré
- IBW (Ideal Body Weight): poids idéal, sert à définir EBW (Excess Body Weight) = TBW-IBW
- LBW (Lean Body Weight): poids maigre (sans le tissus adipeux)
- ABW (Adjusted Body Weight): poids ajusté avec facteur d'ajustement
- PNW (Predicted Normal Weight) : poids normal prédit
- Surface corporelle (SC) : chimiothérapie





#### Table 1. Common formulas used in obesity calculations

| Measure                                                       | Formula                                                                    |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------|--|
| BMI                                                           | $BMI = TBW/[Ht(m) \times Ht(m)]$                                           |  |
| IBW (Devine)                                                  | $IBW = 45.4 + [0.89 \times (Ht(cm) - 152.4)] (+4.5 \text{ if male})$       |  |
| EBW                                                           | EBW=TBW-IBW (environ 30% d'eau)                                            |  |
| LBW (Janmahasatian)                                           | Males: LBW = $(9270 \times TBW) / [6680 + (216 \times BMI)]$               |  |
|                                                               | Female: LBW = $(9270 \times TBW) / [8780 + (244 \times BMI)]$              |  |
| FFM Males: $FFM = (TBW \times 0.285) + [12.1 \times Ht(m)^2]$ |                                                                            |  |
|                                                               | Females: FFM= (TBW $\times$ 0.287) + [9.74 $\times$ Ht(m) <sup>2</sup> ]   |  |
| ABW = $IBW + [DWCF \times (TBW - IBW)]$                       |                                                                            |  |
|                                                               | $ABW = IBW + (DWCF \times EBW)$                                            |  |
| PNW                                                           | Males: $PNW = (TBW \times 1.57) - (TBW \times BMI \times 0.0183) - 10.5$   |  |
|                                                               | Females: $PNW = (TBW \times 1.75) - (TBW \times BMI \times 0.0242) - 12.6$ |  |
| BSA Dubois and Dubois                                         | $BSA = TBW^{0.425} \times Ht(cm)^{0.725} \times 0.007184$                  |  |
| BSA Mosteller                                                 | $BSA = \sqrt{[(Ht(cm) \times Wt)/3600]}$                                   |  |
| BSA Mosteller                                                 | $BSA = \sqrt{[(Ht(cm) \times Wt)/3600]}$                                   |  |




## Cas clinique

Un homme de 40 ans, pesant 140 kg pour 160 cm de taille à une infection urinaire que vous voulez traiter. Quel poids allez-vous utiliser?

- BMI (Body Mass Index) ou IMC :  $140/1.6^2 = 54.7 \text{ kg/m}^2$
- TBW : 140 kg
- IBW:  $49.9+(0.89x[160-152.4]) = 57 \text{ kg} \rightarrow \text{EBW} : 140-57 = 83 \text{ kg}$
- -LBW : (9270x140)/(6680+(216xBMI) = 70 kg
- PNW: (140x1.57)-(140x54.7x0.0183)-10.5 = 69 kg
- ABW: 57+(FCx[140-57]) = 90 kg (si FC = 0.4)
- SC: 2.33 m<sup>2</sup> par Dubois

FC : facteur de correction pour les médicament diffusant dans le tissus graisseux



## Pharmacodynamie-2

| Paramètres            | Bactéricidie                                                                                                                 | Antibiotiques                                                                                 | En pratique                                    |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------|
| T > CMI               | <ul> <li>Temps-dépendance dès que [C*] &gt; 2-4 x CMI</li> <li>peu ou pas d'EPA</li> <li>* attention dépend du VD</li> </ul> | <ul><li>B-lactames</li><li>oxazolidinone</li><li>clindamycine</li><li>glycopeptides</li></ul> | Maximiser ce temps (dose / perfusion continue) |
| C <sub>max</sub> /CMI | <ul><li>concentration-dépendance</li><li>EPA important</li></ul>                                                             | - aminosides                                                                                  | Optimiser le pic                               |
| AUC/CMI               | <ul><li>bactéricidie rapide dépendant<br/>de la [C]</li><li>idem pour le EPA</li></ul>                                       | - fluoroquinolones                                                                            |                                                |

Favoriser le dosage des antibiotiques





## Antibiotiques études spécifiques chez l'obèse

- Aminosides
- Vancomycine
- Daptomycine
- Linézolide



## Bêta-lactamines : pénicillines

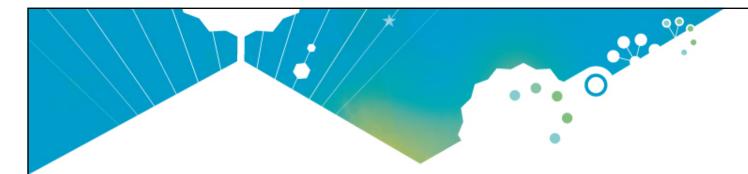
- Amoxicilline : peu de données
  - Aucune diffusion dans le tissus adipeux
  - Empirique : IBW + 0.3( ABW-IBW) (82 kg)
  - pour certains : TBW
  - Pondération par les valeurs de CMI
  - Dosages sériques possibles / perfusion continue
  - Fragmenter les doses totales importantes
  - Idem oxacilline
- Pipéracilline-tazobactam : augmenter les posologies jusqu'à 20-24 g/24 h



#### Bêta-lactamines : autres

- Céphalosporines :
  - Augmentation des posologies (ceftriaxone / céfotaxime)
  - Attention en prophylaxie : répéter les injections /3 h
    - ➤ Céfazoline : 2 g/3 h
    - ➤ Céfamandole : 2 g/3 h
- Pénem : aucune donnée sur Imipénem
  - Ertapénem : dépend de la CMI du germe (0.25-0.5 μg/ml)
  - Méropénem : privilégier la posologie la plus forte 2 g/8 h
- Aztréonam :
  - Posologie maximale 2 g/6 h

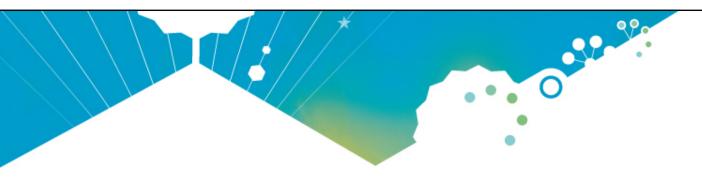



#### **Aminosides**

- Si ABW : surdosage
- Si IBW : sous-dosage
- Utilisation d'un facteur de correction de poids :
  - Poids ajusté = IBW + FC(ABW-IBW)
    - > FC gentamycine : 0.43 (93 kg)
    - > FC amikacine : 0.38 (89 kg)
- Intervalle de dose identique
- Toxicité rénale accrue
- Dosages sériques indispensables pour ajustement ultérieur



## Fluoroquinolones


- Ciprofloxacine : posologies variables
  - Localisation de l'infection
  - Dosage possible
  - Augmentation de la dose totale :
    - > IV : jusqu'à 800 mg/12 h
    - ➤ ABW : IBW + 0.4(TBW-IBW) (90 kg)
- Lévofloxacine :
  - Ne pas dépasser 750 mg/j



## Vancomycine

- Particularités pharmacodyamiques
  - Bactéricidie lente
  - Augmentation des CMI :
    - ➤ Dose de charge à 15-20 mg/kg sur TBW (2 g 3 g)
    - Posologie journalière J1 à 30 mg/kg/j et avec ABW
      - ABW= IBW + 0.4(TBW-IBW) (90kg)
    - Dosage sérique : concentration cible





## Daptomycine

- Enjeux importants
  - Résistances
  - Tolérance
  - Variations de la posologie prescrite
    - > 6 mg/kg/j
    - > 10 mg/Kg /j
  - Poids: TBW
    - > Exposition : + 25-30%
  - Données dossier pharmaceutique : 56-147 Kg



#### Linézolide

- Posologie standard : 600 mg/12 h
  - Quel que soit le poids
  - La conserver tant que CMI < 4 μg/ml</li>
  - Sinon discuter 600 mg/8 h
  - Risque de toxicité accrue +++
  - Si IV : proposer perfusion continue à posologie standard





## Autres antibiotiques

- Macrolides : clarithromycine
- Trimethoprime-sulfamethoxazole (TMP-SMZ)
- Antituberculeux

On s'en remet au poids idéal Avec une possibilité d'augmenter les doses Surveillance de la tolérance





#### Conclusions

- Enjeux thérapeutique et pronostique importants : document de référence
- Lien sous-dosage et résistance
- Des données peu fiables
- Une incidence de l'obésité croissante
- Un vrai sujet de pharmacie clinique
- Mesurer le poids



### Résumé

| Antibiotiques     | Poids pour calcul de la posologie     |
|-------------------|---------------------------------------|
| Bêta-lactamines*  | Poids théorique + 0,30 $\Delta$ poids |
| Gentamicine*      | Poids théorique + 0,43 $\Delta$ poids |
| Amikacine*        | Poids théorique + 0,38 $\Delta$ poids |
| Vancomycine*      | Poids constaté (charge)               |
| Sulfamides        | Poids théorique                       |
| Ciprofloxacine*   | Poids théorique + 0,45 $\Delta$ poids |
| Macrolide         | Poids théorique                       |
| Anti-tuberculeux* | Poids théorique                       |

Δ poids = Poids constaté - Poids théorique

